

TC7150 --- 宽输入电源转换芯片

概述

TC7150芯片是为解决宽范围电源电压应 用而研发的三端正电源稳压电路。

芯片电源电压 $+5.5V\sim+36V$,静态功耗小于 $90\mu A$,内部集成过流、过温保护电路,使用起来可靠、方便。

功能特点

- 静态功耗典型值小于 90μA;
- 工作电压范围: +5.5V~+36V;
- 最大输出电流为 50mA;
- 过流、过温保护;
- 输出晶体管安全工作区域(SOA)保护;
- TO-92 和 SOT-89 封装。

1. 引脚描述

1.1 引脚图

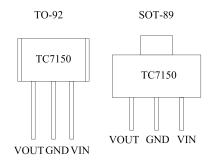


图 1.1 芯片引脚图 (顶视图)

1.2 引脚说明

表 1.1 引脚说明

引脚号	引脚名称	功能		
1	VOUT	输出电压		
2	GND	地		
3	VIN	输入电压		

2. 原理框图

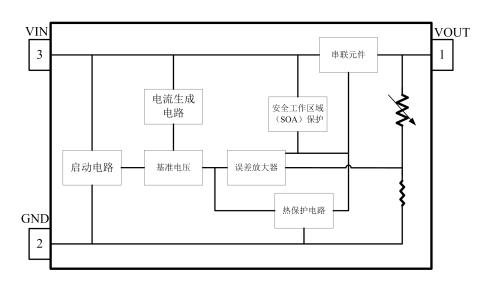


图 2.1 原理框图

3. 参数特性

3.1 极限参数

表 3.1 极限参数

参数	符号	符号 数值	
输入电压	Vin	40	V
结到环境热阻(TO-92)	R _{JA}	150	°C/W
结到环境热阻(SOT-89)	R _{JA}	120	°C/W
工作温度	T_{OPR}	-40~+85	°C
贮存温度	T _{STG}	-65~+150	$^{\circ}$ C

3.2 电气参数

表 3.2 电气参数

参数	符号	测试条件	最小值	典型值	最大值	单位
输出电压	***	5.5V <v<sub>IN<36V, I_O<50μA</v<sub>	4.8	5.0	5.2	V
	Vo	5.5V <v<sub>IN<36V, 50μA<i<sub>O<50mA, P_O<250mW</i<sub></v<sub>	4.75	5.0	5.25	V
公本 地田 公本	***	5.5V <v<sub>IN<26V, I_O<50μA</v<sub>			60	mV
线性调整率	Vo	26V <v<sub>IN<36V, I_O<50μA</v<sub>			200	mV
负载调整率	Vo	V _{IN} =7V, 50μA <i<sub>O<50mA</i<sub>			50	mV
静态电流	IQ	5.5V <v<sub>IN<36V</v<sub>			90	μΑ
输出电压温漂	Vo/T	Io=5.0mA		0.8		mV/℃
输出噪声电压	Vn	10Hz≤f≤100kHz		50		μV
纹波抑制比	RR	f=120Hz, 7V <v<sub>IN<18V</v<sub>		70		dB
	Vo	Io= 10mA		60	90	mV
输入输出电压差		Io= 25mA		150	220	mV
		Io= 50mA		350	420	mV
输出阻抗	Ro	Io= 50mA, V _{IN} =7V, f=1kHz		300		mΩ
	Ірк	5.5V <v<sub>IN<15V</v<sub>	50			mA
松山山太		15V <v<sub>IN<22V</v<sub>	30			mA
输出电流		22V <v<sub>IN<30V</v<sub>	20			mA
		30V <v<sub>IN<36V</v<sub>	15			mA
短路电流	Isc	5.5V <v<sub>IN<36V</v<sub>				mA

注:除非特殊说明,参考测试电路中数据均在以下条件测得: C1=0.33 μ F,CO=4.7 μ F,Tj=25℃。

4. 特性曲线

4.1 最大输出电流-输入电压

图 4.1 反映了芯片在适用电压范围内输出电流变化情况。(测试条件: Ta=25℃, +5.5V<Vin<+36V)

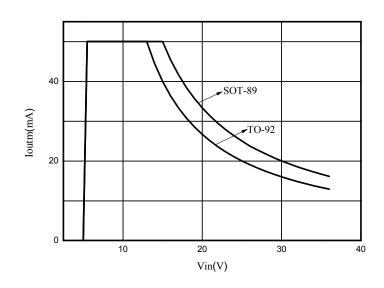


图 4.1 芯片输出电流随电源电压变化曲线

4.2 消耗电流-输入电压

图 4.2 反映了芯片在适用电压范围内静态电流变化情况。(测试条件: Ta=25℃, +5.5V<Vin<+36V)

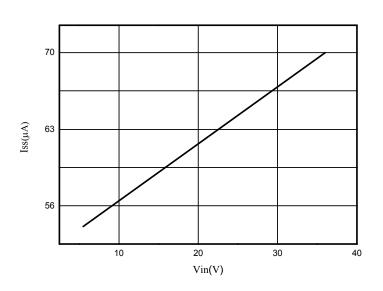


图 4.2 芯片静态电流随电源电压变化曲线

4.3 消耗电流-环境温度

图 4.3 反映了芯片在适用环境温度下静态电流变化情况。(测试条件: Vin=+12V, -40℃≤Ta≤+85℃)

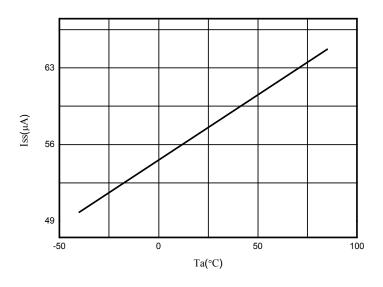
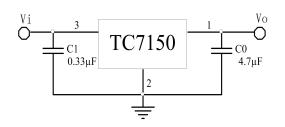



图 4.3 芯片静态电流随环境温度变化曲线

5. 测试电路

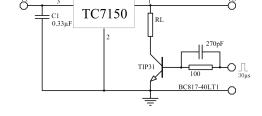


图 4.1 直流电参数测试电路

图 4.2 负载调整率测试电路

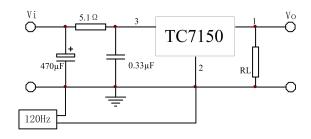


图 4.3 纹波抑制比测试电路

6. 参考电路

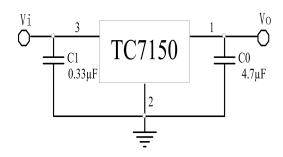


图 5.1 固定输出稳压电路

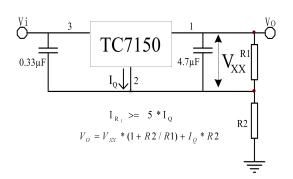


图 5.3 增强型稳压输出电路

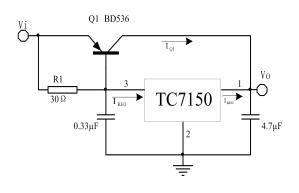
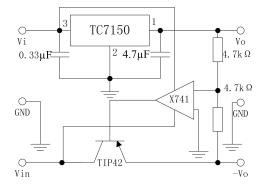



图 5.5 高电流电压稳压电路

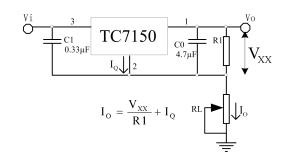


图 5.2 恒流稳压电路

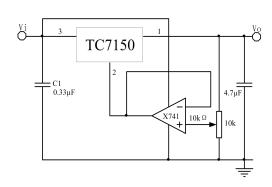


图 5.4 可调型输出电路

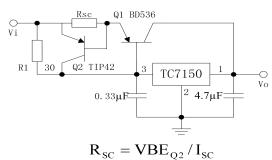
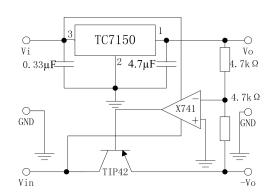
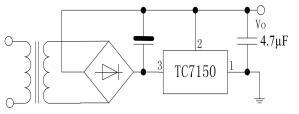
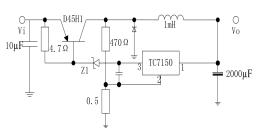
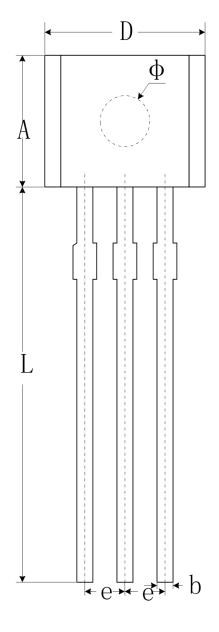
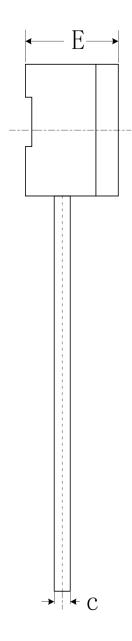
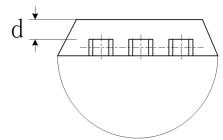




图 5.6 高输出电流短路保护电路

图 5.7 跟踪电压稳压电路

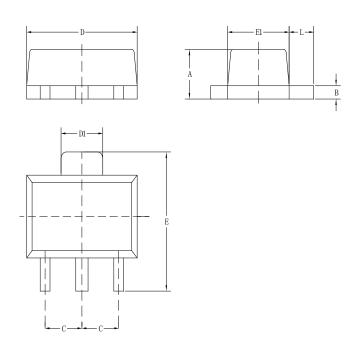
图 5.8 分电源电路(±15V, 1A)


图 5.10 开关稳压电路

7. 封装描述

7.1 T0-92 封装



SYMBOL	MILLMETER			
STMBOL	MIN	MAX		
A	4.35	4.70		
В	0.40	0.55		
С	0.36	0.50		
D	4.40	4.70		
d	0.80	1.20		
Е	3.40	3.70		
e	1.20	1.30		
L	13.5	14.5		
φ	1.45	1.60		

7. 2 SOT-89 封装

SYMBOL	MILLMETER			
STMBOL	MIN	NOM	MAX	
A	1.40	1.50	1.60	
В	0.36	-	0.46	
С	1.50BSC			
D	4.30	4.50	4.70	
D1	1.70REF			
Е	4.00	4.20	4.40	
E1	2.30	2.50	2.70	
L	0.80	1.0	1.20	

版本记录

版本编号/修改状态	拟制人/修改人	审核人	批准人	备注
V1.0	李勇			
V1.1	顾艳武			对数据手册的整体结构进行调整,同时更新相关参数和图表。
V1.2				修改"SOT-89 封装"示意图。
V1.3	孟睿锐			对数据手册整体格式进行调整,更新特性曲线。修改"SOT-89" 封装图
V1.4	张浩浩			修改线性调整率。